Improved Bounds on the Average Distance to the Fermat-Weber Center of a Convex Object

نویسندگان

  • A. Karim Abu-Affash
  • Matthew J. Katz
چکیده

We show that for any convex object Q in the plane, the average distance between the Fermat-Weber center of Q and the points in Q is at least 4∆(Q)/25, and at most 2∆(Q)/(3 √ 3), where ∆(Q) is the diameter of Q. We use the former bound to improve the approximation ratio of a load-balancing algorithm of Aronov et al. [2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fermat-Weber center of a convex object

We show that for any convex object Q in the plane, the average distance from the Fermat-Weber center of Q to the points in Q is at least ∆(P )/7, where ∆(P ) is the diameter of P , and that there exists a convex object for which this distance is ∆(P )/6. We use this result to obtain a linear-time approximation scheme for finding an approximate Fermat-Weber center of a convex polygon Q.

متن کامل

New Bounds on the Average Distance from the Fermat-Weber Center of a Planar Convex Body

The Fermat-Weber center of a planar body Q is a point in the plane from which the average distance to the points in Q is minimal. We first show that for any convex body Q in the plane, the average distance from the Fermat-Weber center of Q to the points of Q is larger than 16 · ∆(Q), where ∆(Q) is the diameter of Q. This proves a conjecture of Carmi, HarPeled and Katz. From the other direction,...

متن کامل

On the continuous Fermat-Weber problem for a convex polygon using Euclidean distance

In this paper, we consider the continuous Fermat-Weber problem, where the customers are continuously (uniformly) distributed along the boundary of a convex polygon. We derive the closed-form expression for finding the average distance from a given point to the continuously distributed customers along the boundary. A Weiszfeld-type procedure is proposed for this model, which is shown to be linea...

متن کامل

ar X iv : c s . C G / 0 31 00 27 v 1 1 5 O ct 2 00 3 On the Continuous Fermat - Weber Problem ∗

We give the first exact algorithmic study of facility location problems that deal with finding a median for a continuum of demand points. In particular, we consider versions of the “continuous k-median (Fermat-Weber) problem” where the goal is to select one or more center points that minimize the average distance to a set of points in a demand region. In such problems, the average is computed a...

متن کامل

ar X iv : c s / 03 10 02 7 v 1 [ cs . C G ] 1 5 O ct 2 00 3 On the Continuous Fermat - Weber Problem ∗ Sándor

We give the first exact algorithmic study of facility location problems that deal with finding a median for a continuum of demand points. In particular, we consider versions of the “continuous k-median (Fermat-Weber) problem” where the goal is to select one or more center points that minimize the average distance to a set of points in a demand region. In such problems, the average is computed a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2008